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The laminar unsteady flow of a viscous fluid away 
from a plane stagnation point 

By MARK J. HOMMELt 
Department of Mechanical Engineering, Stanford University 

(Received 1 March 1982 and in revised form 15 March 1983) 

The development with time of the impulsively started laminar flow of a viscous fluid 
away from a stagnation point is investigated. A series expansion in time is formulated 
for the shear stress and displacement thickness. This series expansion is obtained from 
a numerical solution of the full Navier-Stokes equations, and 44 terms are computed 
for the shear-stress series. The series is analysed and series-improvement techniques 
are employed to improve its convergence properties. The final series that results 
converges even for infinite time, and acceptable agreement with the Proudman & 
Johnson calculations of shear stress for steady-state flow at a stagnation point is 
obtained. Only 17 terms in the displacement-thickness series are reported, owing to 
numerical difficulties which are considerably more of an obstacle than in the 
shear-stress calculation. However, it  is observed that the displacement thickness 
grows exponentially with time. Acceptable agreement with calculations of Proudman 
& Johnson is obtained for small time. For dimensionless time greater than 2.5, it is 
concluded that not enough terms are known to extrapolate the displacement-thickness 
series further. 

1. Introduction 
Proudman & Johnson (1962) have proposed an asymptotic expansion to model the 

time-dependent flow away from a stagnation point. This structure was studied in 
detail by Robins & Howarth (1972), who continued the asymptotic expansion. They 
found higher-order terms with an associated number of indeterminate constants 
which arose in the expansion. They also obtained a numerical solution of the full 
initial-value problem which supported their asymptotic expansion, at least for finite 
time values. 

The line of reasoning of these papers is that, since the wake thickness grows very 
rapidly under the action of the convection field, the lengthscale normal to the flow 
boundary becomes much larger than the distance over which viscous forces are 
important. It was therefore conjectured that the viscous term in the governing 
equation is important only near the boundary, and a major portion of the flow region 
for large times is governed by the inviscid equation. A similarity solution of the 
inviscid equation was obtained which showed that the boundary-layer thickness 
increases exponentially with time. It follows from this solution that the flow in a local 
region away from a stagnation point ultimately becomes steady flow towards a 
stagnation point, even as the global size of the reverse-flow region continues to grow. 
The global skin friction a t  the stagnation point would therefore tend to a finite 
negative value, equal in magnitude and opposite in sign to  that of flow towards a 
stagnation point. 

t Present address: F. G. Bercha and Associates, Houston, Texas. 
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In the present study, we attempt to model once again the laminar flow of an 
incompressible fluid with small viscosity away from a stagnation point. This is an 
idealized local solution a t  a point for all time. The approach taken is to formulate 
a series expansion in time for the shear stress at the stagnation point, and then to 
apply series-improvement techniques with the hope of extrapolating to large times. 
It is well known that transformations can improve the accuracy of a power series as 
well as extend its radius of convergence. Such an approach has proven successful in 
other problems (see e.g. Van Dyke 1970) where the series was found to be limited 
by a radius of convergence lacking physical meaning. This radius of convergence is 
defined by the series’ pole nearest to the origin in the complex plane. For poles not 
on the positive real axis for a physical variable, no physical meaning can be attached 
to the pole. The series could then be improved by analytic continuation into the region 
outside the radius of convergence, for physically interesting values of the expansion 
variable. If only a finite number of terms for the series is known, and the radius of 
convergence can be estimated, a practical method of analytical continuation is to 
banish the offending pole (or, more generally, singularity) to infinity with a linear 
fractional transformation, such as an Euler transformation. This is achieved by 
introducing the transformation and recasting the series in powers of the new variable. 
In terms of the new variable, the series is then not unnecessarily restricted from 
converging. This approach is appealing because it does not rely on a numerical model 
of the entire two-dimensional flow field, but rather appeals to the principles of 
analytical continuation for a power series. 

2. Method of solution 
Dimensional coordinates xf  and y’ are defined tangential and normal to the flow 

boundary respectively, with xf measured away from the stagnation point. We define 
non-dimensional coordinates as follows : 

x = -  2’ 
a a 

where U, is the speed of the stream a t  infinity, a is a characteristic length, v is the 
kinematic viscosity and t’ is the time. In a small region near the stagnation point, 
the potential flow corresponding to an impulsive start is described by the stream 
function, $ = - ( ~ v a U , ) i x y .  

Following Proudman & Johnson (1962),  this potential solution is enforced as the 
outer boundary condition for all time. Then the Navier-Stokes equations are solved 
exactly by setting $’ = - ( ~ v u U , ) ~  xF(y,  t )  

to obtain the following differential equation with initial and boundary conditions: 

(2 .2)  

(2 .3)  

A t  this point the present analysis departs from that of Proudman & Johnson. A 
solution to (2 .4)  is sought as an expansion in time from t = 0,  rather than assuming 
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1 1.1283791671 23 -0.1976 X lo-'' 
2 -1.60727816 24 -0.9133 X lo-" 
3 -0.2480917 25 -0.1530X lo-'' 
4 0.14290 x lo-' 26 0.8296 x 10-l2 
5 0.28692 x lo-' 27 0.1985 x 10-l' 
6 0.63774 x lo-' 28 -0.3284 x 

8 -0.10750~ lo-' 30 -0.281 1 x 
9 -0.97361 x 31 0.171 7 x LO-'* 

10 0.89268 x lop4 32 0.6626 x 10V6 
11 0.30662 x lop4 33 -0.262 x lo-'' 

7 -0.15147 x lo-' 29 -0.2569 X lo-'' 

12 -0.18844 x 34 -0.6351 X lo-'' 
13 -0.34650 x 35 -0.1522 X lo-'' 
14 -0.61583 X lo-' 36 0.2526 x lo-'' 
15 0.19425 x 37 0.2129 x lo-" 
16 0.10522 x 38 0.251 1 x 10-ls 

18 -0.8889 x 10-8 40 - 0.607 5 X 

19 -0.26564 x lo-' 41 0.2687 x 
20 0.24906 x 42 0.659 1 x 
21 0.3176 x 43 0.1050 x 

17 0.581 23 x loTs 39 -0.1575X lo-'* 

22 0.4865 x 10-lo 44 -0.4285 X lo-'' 

TABLE 1. Values of f,"(O) for rear stagnation point 

an asymptotic form of the flow a long time after the start. Seeking such a solution 
to the full Navier-Stokes equations obviates the necessity of using a matched 
asymptotic expansion. Equation (2.4) is uniformly valid. 

The expansion which is formed conveniently treats initial viscous-diffusion effects 
and also properly handles the boundary conditions. We set 

(2.5) F = 2t+{fl(V) + tfi(q) + %(q) + . ..I, 
where q = y/2&. Substituting this expansion into the full problem (2.4) gives a series 
of linear, third order, ordinary differential equations similar to those solved by Collins 
& Dennis (1973). The equations are solved by employing the finite-difference scheme 
of Collins & Dennis. This scheme is O(hs) and is exceedingly accurate. 

The main result sought here is the shear stress at  the boundary given by 

where rku is the dimensional shear stress at  the flow boundary and p is the fluid 
density . 

A total of 44 terms was obtained using an IBM 370/168. These terms are tabulated 
in table 1. The terms in (2.6) were obtained using extended precision, which carries 
35 significant figures, and then comparing with double precision, which carries 16 
significant figures, to monitor round-off error. The accuracy of the numerical scheme 
was evaluated by comparing the computed values of f ; ( O )  and fj'(0) with their exact 
values, given by Wundt's (1955) boundary-layer solution. This is possible because 
the full Navier-Stokes equation applied at a plane wall degenerates to equations 
identical with the boundary-layer equations solved by Wundt. No comparison was 
performed for f : (O) because fl was obtained by integrating the exponential function 
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twice. Comparison was also made with the numerical results of Collins & Dennis (1973) 
for the first eightf,”(O) and agreement is excellent. Details are available in Hommel 
(1981). 

As the calculation using a mesh size h = 0.01 came the closest to reproducing the 
exact values offl(0) andf:(O), the somewhat conservative approach was adopted of 
reporting as significant figures only as many digits to which the h = 0.01 and 
h = 0.025 calculations agree. The boundary condition a t  infinity was actually 
imposed a t  7 = 5 and then checked with another solution using 7 = 12.5. No 
significant difference in the shear stress at  7 = 0 was observed. Having thus 
established the accuracy of the numerical method, the 44 terms calculated for (2.6) 
are given in table 1. 

3. Series analysis 
The analysis procedure to follow is motivated by considering the model function 

f(€) = (1 +€)-I = 1 - - B + e 2 - - E 3 +  ... , (3.1) 

which has a singularity at e = - 1, and hence a radius of convergence of 1. We 
introduce an Euler transformation 

(3.2) a=-  
1 + € ’  

8 

It is found that the new series terminates after only two terms: 

f(S) = 1-6. (3.3) 

The new series (3.3) represents the original series (3.1) throughout the &plane. Its 
advantage is that the singularity present ate: = - 1 in (3.1) has been mapped to S = co 
in (3.3). The techniques presented here represent a generalization of this approach. 

In figure 1 the Cauchy Root Test is used to estimate the radius of convergence of 
the series (2.6). A radius of convergence of approximately 3 is indicated. 

Next, we consider the sign pattern in table 1 to obtain further information about 
the location of the nearest singularity. For coefficients numbered 4, . . . ,44, the 
sign pattern is (+ + + - - - + + - - - + + + - -)  with the exceptions of 
coefficients numbers 33 and 41. Note, however, that both the 33rd coefficient and the 
41st coefficient are smaller than would be expected from examining their neighbours. 

As pointed out by Van Dyke (1980), a sign pattern is associated with a complex- 
conjugate pair of singularities forming angles /? and -/? with the real axis in the 
complex plane. That is, the sum of two simple poles gives the model function 

m 

(3.4) 

The period of the sign pattern mentioned above is 16, and so a value of p = &tm 
in (3.4) reproduces the sign pattern displayed for coefficients 4,. .. ,44. Calculation 
of sign patterns for various values of m and comparison with table 1 implies m = 6, 
locating the nearest singularities on the rays f 6 7 . 5 O .  The value of /3 obtained by this 
analysis, however, is not necessarily unique, even though a unique value of /? is 
associated with any given sign pattern. Fortunately, the final calculated value of 
the shear stress is not strongly dependent on the value of /? chosen. More will be said 
of this later. 

Additional information can be obtained from the Pad6 approximants P ( M / N ) .  A 
Pad6 approximant is a rational fraction with numerator of degree M and denominator 
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FIGURE 1. Cauchy Root Test for shear stress. 
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FIGURE 2. Location of poles for stagnation point from Pad6 analysis 

of degree N that reproduces a given power series to M + N +  1 terms when the Pad6 
approximant is expanded. The poles of a Pad6 approximant are related to the 
singularities whose existence is suggested by the sign pattern of table 1.  We expect 
that taking successively more terms in the Pad6 approximant will provide increasingly 
refined estimates of the location of the nearest complex singularity. Figure 2 shows 
the complex plane and the location of the poles as suggested by the sign pattern as 

14 F L Y  132 
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well as the location calculated by means of the Pad6 approximants. It appears that 
the singularity a t  /3 = dominates the sign pattern and hence the series itself. 
Indeed, the residues of the associated singularities obtained in the Pad6 analysis are 
at  least several orders of magnitude larger than the residues of any other singularity, 
even those which are somewhat closer to the origin. For example, the residue 
magnitudes given by P(22/22) are 12.1,9.29 and 0.355 for poles a t  angles 67.9’, 7 0 . 5 O  
and 90.5’ respectively. All other residue magnitudes are less than 0.005. Closer 
examination reveals that the Pad6 approximants’ estimates of the singularity’s 
location remains consistent with increasing N .  Under-flow limitations of the computer 
prevented calculation of Pad6 approximants P ( N / N )  of order N > 22, using further 
terms of (2.6) which are reported by Hommel (1981). Nevertheless, the Pad6 
approximants do increase our confidence in having established the location of the 
nearest singularity. 

The Pad6 analysis further shows that the first zero of the rear stagnation-point 
shear stress is a t  t = 0.643839707. This number provides yet another check on the 
accuracy of the analysis because the time at which the shear stress goes to zero is 
a widely published number which has been calculated in a variety of ways. The 
following comparisons include the result of just three past studies : 

present study (dividing by 0.321 91985 (44 terms) 

Collins & Dennis (1973) 0.3220 (7 terms) 
Goldstein & Rosenhead (1936) 0.3195 (3 terms) 
Blasius (1908) 0.35 (2 terms) 

2 for same coordinates) 

Agreement is satisfactory. 
We now attempt to improve the convergence properties of the series in order to 

extrapolate the solution to largertimes. To do this we employ acomplex transformation 
analogous to the real Euler transformation (3.2). The dominant singularity is 
banished to infinity by setting 

Rt 
U =  

(t2 - 2tR C O S / ~ +  R2)Q ’ (3.5) 

where the dominant singularity pair is located at  a radius of R from the origin and 
at  angles of -+/3 in the complex t-plane. As pointed out by Pearce (1978), this 
transformation may be considered to be a generalization of the Euler transformation 
given in (3.2). The value of R is suggested to be 3 from the Cauchy Root Test. We 
choose /3 = 6 7 . 5 O ,  in accordance with the sign pattern in table 1, acknowledging that 
the final results are not sensitive to the exact values of R and /3 chosen. This will be 
discussed later. 

We recast (2.6) using (3.5) to obtain 

where U ,  = U,/a. Values for the d, coefficients are given by Hommel (1981). The 
coefficients alternate in sign after the 19th term, suggesting the nearest singularity 
for (3.6) is now on the negative real axis. 

Examination of the inverse transformation of (3.5) shows that the generalized Euler 
transformation introduces spurious singularities which are not present in the original 
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t 

0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 
6.0 
6.5 
7 .O 
7.5 

Numerical solution 
(Howarth 1981 

M. Van Dyke) 
7‘ personal communication to 

0.188418298 0.18821 
-0.340 102048 - 0.34009 
- 0.666 41 9 2 14 - 0.66647 
- 0.884 219 20 -0.88437 
- 1.022 39 -1.0226 
-1.10479 - 1.105 1 
-1.1524 -1.1528 
-1.180 -1.1808 
-1.197 -1.1981 
-1.210 - 1.2094 
-1.220 -1.2170 
- 1.22 
- 1.23 
- 1.23 
-1.23 - 

- 
- 
- 

TABLE 2. Computed values for the shear stress 

series. The inverse of (3.5) is 

R ~ ~ c o s / 3 - R ~ u ( l - ( u s i n / 3 / R ) ~ ) ~  
t =  

u2 - R2 (3.7) 

In our case, B = 67.5’, and hence 0 < /? < +x. Pearce (1978) has shown that, for such 
a value of p, the inverse transformation has a pole at  u = -R and a branch point 
at  u = R/sinp. 

Following Pearce (3.5), an Euler transformation is now introduced with R = 3 in 

to obtain 

Ru E = - -  
U+R 

(3.9) 

Values for the c, coefficients are given by Hommel (1981). Summing the series for 
values of t produces the results presented in table 2. Note that Howarth’s (1981 
personal communication to M. Van Dyke) solution is obtained from a numerical 
integration of the full Navier-Stokes equations as applied to a plane boundary. 
Setting 5 = 4R corresponding to  u = R, t - t  00 in (3.9) gives 

7’ = - 1.23pdG x’, (3.10) 

which supports the value of - 1.23259, suggested by the model of Proudman & 
Johnson. 

The accuracy of the values of R and 8, of course, is somewhat questionable owing 
to how they were found: R by graphical extrapolation; /3 by analogy with a model 
function. While the model function is unique for a given sign pattern, the sign pattern 
itself is not necessarily unique, being dependent upon the analyst’s judgement. It is 

14-2 
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n (3.11) 

1 0.564 189 583 5 
2 0.41984 
3 0.2448 
4 0.8423 x lo-' 
5 0 . 4 7 0 ~  lo-' 
6 -0.1157 X 10-1 
7 -0.5804 X lo-' 
8 -0.403 x 
9 0.897~10-3 

10 0.47 x 10-3 
11 0.47 x 10-4 
12 -0.62 x 10-4 
13 -0.35 x lo-* 
14 -0.41 x 
15 0 . 4 2 ~  
16 0 . 2 5 ~  lop5 
17 0 . 3 ~  

(3.12) (3.13) 

0.5641895835 0.5641895835 

0.1070 0.1355 
- 0.144 35 - 0.160 68 

-0.4468 x lo-' -0.741 0 x lo-' 
-0.360 x lo-' 0.243 x 10-l 

0.1562 x lo-' 0.6004 x lod2 
0.773 x -0.252 X lo-' 
0.909 x 10-4 0.122 x 10-2 

-0.2163 x lo-' -0 .1530~ lo-' 

-0.10 x 10-3 
-0.58 x 10-4 
-0.74 x 1 0 - 5  

0.71 x 10-5 
0.45 x 10-5 
0.39 x 1 0 - 5  0.59 x 

-0.41 x lo-' 

-0.46 x 10-3 
0.21 x 10-3 

-0.87 x 10-4 
0.35 x 10-4 

-0.15 x 10-4 

-0.22 x 10-5 
-0.4 x 10-5 0.6 x 

TABLE 3. Displacement-thickness series coefficients 

(3.14) 

0.5641895835 

0.7866 x lo-' 
0 .1187~ 10-l 

-0.66646 x lo-' 

-0.738 x lo-' 
-0.1504 x lo-' 
-0.1475~ lo-' 
-0.112 x 10-1 
-0.726 x lo-' 
-0.40 x lo-' 
-0.18 x lo-' 
-0.46 x 10-3 

0.17 x 10-3 
0.38 x 10-3 
0.39 x 10-3 
0.30 x 10-3 
0.2 x 10-3 

gratifying therefore that varying R from 3.0 to 3.4 causes no changes in values of 
the shear stress calculated from (3.9) for finite values of time, to the number of 
significant figures shown in table 2. Changing /3 from 67.5O, which corresponds to the 
sign pattern of table 1, to 80°, also produced no change. Varying R in the second 
transformation from 1.5 to 3.0 likewise produced no change in computed values of 
the shear stress. 

An attempt was also made to calculate displacement thickness. The calculation of 
displacement thickness is much more difficult than the calculation of the wall shear 
stress. This is due to the exponential decay of the flow properties at infinity. The 
accuracy of the calculation of f,(oo) is more susceptible to truncation and round-off 
errors as well as errors caused by locating the outer boundary condition at some finite 
value of instead of a t  'infinity'. Of the three sources of error, round-off error most 
quickly swamps the accuracy of the calculation, and it was concluded that only 17 
terms in the series expansion for displacement thickness could be reported. 

The displacement thickness is given by 

(3.11) 

Values of the b, coefficients are given in table 3. 

solution given by Proudman & Johnson: 
We now extract a factor et from the series (3.11) in anticipation of the form of the 

(3.12) 

Values for the a, coefficients are given in table 3. We then assume the same location 
for the nearest singularity as was obtained for the shear stress, and introduce (3.5) 
into (3.12) to obtain 

(3.13) 
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t 

0.5 
1 .o 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5.5 

(Numerical solution, 
Howarth (1981 

personal communication to 
(equation (3.14)) M. Van Dyke)) 

(yl va 

1.195974 
2.6026 
4.719 
7.5 

11.0 
15.0 
20.0 
- 
- 
- 
- 

1.1961 
2.6067 
4.7385 
7.5938 

11.246 
16.231 
23.708 
35.614 
55.129 
87.558 

141.860 

TABLE 4. Displacement thickness as a function of time 

whose coefficients are tabulated in table 3. The signs of the series alternate, as was 
expected. The transformation (3.8) is then introduced to obtain 

(3.14) 

The cn coefficients are listed in table 3. It is not possible to exploit a sign pattern 
here because not enough terms are available upon which to base conclusions. 
Calculated values for the displacement thickness as a function of time are presented 
in table 4. The unimpressive showing of series improvement techniques here is due 
to not having enough terms to work with. Unfortunately, computer round-off 
limitations prohibited our obtaining more terms in the series, and this phase of the 
study was halted. 

4. Conclusions 
Whereas Robins & Howarth (1972) had to integrate the equations out to 7 = 500, 

the present study’s series-improvement technique for the shear-stress series only 
required an integration out to 7 = 5.  All of the information required to examine the 
flow for all time is contained in the initial-value problem for small time. We have 
obtained 44 terms in the time series for the shear stress and have succeeded in 
calculating values for the shear stress for all time, even t + co . Using this technique, 
we have verified Proudman & Johnson’s (1962) prediction that the shear stress for 
flow away from a stagnation point is equal in magnitude and opposite in sign to the 
shear stress for flow toward a stagnation point. This was achieved without making 
any prior assumption regarding the nature of the steady-state flow. The flow reverses 
itself at approximately t = 0.64. This reverse flow occurs abruptly at t = 0.64 for all 
x and the region grows thereafter exponentially with time. It has recently been 
brought to my attention that this problem has also been investigated by Cowley 
(1981), who has found 43 terms of the associated series expansion, using a slightly 
different approach. 
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